Phase-space overlap measures. II. Design and implementation of staging methods for free-energy calculations.
نویسندگان
چکیده
We consider staged free-energy calculation methods in the context of phase-space overlap relations, and argue that the selection of work-based methods should be guided by consideration of the phase-space overlap of the systems of interest. Stages should always be constructed such that work is performed only into a system that has a phase-space subset relation with the starting system. Thus multiple stages are required if the systems of interest are not such that one forms a phase-space subset with the other. Three two-stage methods are possible, termed umbrella sampling, overlap sampling, and funnel sampling. The last is appropriate for cases in which the subset relation holds, but only in the extreme, meaning that one system's important phase space constitutes a very small portion of the others. Umbrella sampling is most suitable for nonoverlap systems, and overlap sampling is appropriate for systems exhibiting partial phase-space overlap. We review recently introduced metrics that characterize phase-space overlap, showing that the performance of the single- and two-stage methods is consistent with the phase-space picture. We also demonstrate that a recently introduced bias-detection measure is effective in identifying inaccuracy in single- and multistage calculations. The examples used are the chemical-potential calculation for a Lennard-Jones liquid at moderate and at high densities, the same for model water at ambient conditions, and a process of charging a neutral ion in water.
منابع مشابه
Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation.
We consider ways to quantify the overlap of the parts of phase space important to two systems, labeled A and B. Of interest is how much of the A-important phase space lies in that important to B, and how much of B lies in A. Two measures are proposed. The first considers four total-energy distributions, formed from all combinations made by tabulating either the A-system or the B-system energy w...
متن کاملQuasi-Static Numerical Simulation of Missile Staging
In this study, the missile staging process by implementing a side-injected jet is simulated numerically. The problem is considered to be axisymmetric and the thin shear layer approximation of Navier-Stokes equations along with an algebraic turbulence model is used in a quasi-static form for the calculations. The free stream corresponds to a very high altitude flight condition with a Mach number...
متن کاملQuasi-Static Numerical Simulation of Missile Staging
In this study, the missile staging process by implementing a side-injected jet is simulated numerically. The problem is considered to be axisymmetric and the thin shear layer approximation of Navier-Stokes equations along with an algebraic turbulence model is used in a quasi-static form for the calculations. The free stream corresponds to a very high altitude flight condition with a Mach number...
متن کاملMulti-Component-Multiphase Flash Calculations for Systems Containing Gas Hydrates by Direct Minimization of Gibbs Free Energy
The Michelsen stability and multiphase flash calculation by direct minimization of Gibbs free energy of the system at constant temperature and pressure, was used for systems containing gas hydrates. The solid hydrate phase was treated as a solid solution. The fugacities of all components of the hydrate phase were calculated as a function of compositions by the rearranged model of van der Wa...
متن کاملpKa predictions of some aniline derivatives by ab initio calculations
: In this work, different levels of theory containing HF, B3LYP, and MP2 with different basis sets such as 6-31G, 6-31G*, 6-311G, 6-311+G, 6-31+G*, 6-31+G are used to predict relative acidity constants of some aniline derivatives. Three different kinds of radii containing UAHF, Bondi, and Pauling are used to study how cavity forms change acidity constants. In all cases, DPCM model is used to si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 123 8 شماره
صفحات -
تاریخ انتشار 2005